走近分子影像学
|
时间:2009-02-06 16:46:50 来源: 作者: |
|
分子影像学概念
分子影像学(molecular imaging)是运用影像学手段显示组织水平、细胞和亚细胞水平的特定分子,反映活体状态下分子水平变化,对其生物学行为在影像方面进行定性和定量研究的科学。因此,分子影像学是将分子生物学技术和现代医学影像学相结合的产物,而经典的影像诊断(X线、CT、MR、超声等)主要显示的是一些分子改变的终效应,具有解剖学改变的疾病;而分子影像学通过发展新的工具、试剂及方法,探查疾病过程中细胞和分子水平的异常,在尚无解剖改变的疾病前检出异常,为探索疾病的发生、发展和转归,评价药物的疗效中,起到连接分子生物学与临床医学之间的桥梁作用。
分子影像学意义
在诊断方面,通过对肿瘤发生过程中的关键标记分子进行成像,可在活体内直接观察到疾病起因、发生、发展等一系列的病理生理变化和特征,而不仅仅显示疾病末期的解剖改变;治疗方面,观察药物作用过程中一些关键的标记分子有没有改变,即可推论这种治疗有无效用;在药物开发方面,通过设计特异性探针,直接在体内显示药物治疗靶点的分子改变,通过建立高能量的影像学分析系统,可大大加快药物的筛选和开发;在基因功能分析以及基因治疗的研究方面,通过设计一系列特异性探针,建立高通量的基因功能体内分析系统,可实时显示该基因在体内表达的丰度、作用过程,也可在体内观察目的基因表达效率,直接评价疗效。目前主要应用于肿瘤学、心血管疾病、神经系统等方面。
分子影像学成像原理
分子影像学融合了分子生物化学、数据处理、纳米技术、图像处理等技术,因其具有高特异性、高灵敏度和图像的高分辨率,因此今后能够真正为临床诊断提供定性、定位、定量的资料。由此可见,分子影像学不再是一个单一的技术变革,而是各种技术的一次整合。分子影像技术有三个关键因素,第一是高特异性分子探针,第二是合适的信号放大技术,第三是能灵敏地获得高分辨率图像的探测系统。它将遗传基因信息、生物化学与新的成像探针综合输入到人体内,用它标记所研究的“靶子”(另一分子),通过分子影像技术,把“靶子”放大,由精密的成像技术来检测,再通过一系列的图像后处理技术,达到显示活体组织分子和细胞水平上的生物学过程的目的,从而对疾病进行亚临床期诊断和治疗。
分子影像学的难点
目前最为常用的分子影像学技术有核医学成像技术,尤以PET的分子显像研究最具活力。另外,MR成像及MR波谱成像(MRS)、光学成像以及红外线光学体层亦颇多使用,而这些影像技术均有各自的利弊。就单从基因治疗来看,有许多问题没有解决,基因转导或转染是否成功?转导或转染的基因是否分布到靶器官或靶组织,其分布是否最佳?靶器或靶组织内转基表达是否可以产生足够的治疗效应?转导或转染的基因是否以足够高的水平定位于其他器官或组织以诱导产生未预料的毒性反应?在与前体药物联合作用时,转基因表达的最佳时机以及启动前体药物治疗的最佳时机如何?转基因表达在靶组织或器官内可持续多长时间?
分子影像学需要跨学科合作
也正因为各种成像技术各有利弊,存在各种难点,因此,常常需要进行跨学科、多角度的交叉与合作,这里面既需要生命科学从分子水平提出亟待解决的问题,也需要物理、化学、生物数字、信息学等学科发展适应分子影像学研究的理论与技术,并应用于该领域。同时,需结合当代前沿的纳米科学技术。然而,缺乏多学科的合作成了阻碍分子影像学发展的瓶颈,尤其缺乏与生物、化学、物理、工程、计算机等相关学科的交流和合作。比如,在分子探针的设计、制备以及表征分析中,就需要生物工程、生物化学等相关专家的密切配合。
|
|
|
|